Human Placenta-Derived Adherent Cell Treatment of Experimental Stroke Promotes Functional Recovery after Stroke in Young Adult and Older Rats
نویسندگان
چکیده
BACKGROUND Human Placenta-Derived Adherent Cells (PDAC®) are a novel mesenchymal-like cell population derived from normal human placental tissue. PDA-001 is a clinical formulation of PDAC® developed for intravenous administration. In this study, we investigated the efficacy of PDA-001 treatment in a rat model of transient middle cerebral artery occlusion (MCAo) in young adult (2-3 month old) and older rats (10-12 months old). METHODS To evaluate efficacy and determine the optimal number of transplanted cells, young adult Wistar rats were subjected to MCAo and treated 1 day post MCAo with 1×10(6), 4×10(6) or 8×10(6) PDA-001 cells (i.v.), vehicle or cell control. 4×10(6) or 8×10(6) PDA-001 cells were also tested in older rats after MCAo. Treatment response was evaluated using a battery of functional outcome tests, consisting of adhesive-removal test, modified Neurological Severity Score (mNSS) and foot-fault test. Young adult rats were sacrificed 56 days after MCAo, older rats were sacrificed 29 days after MCAo, and lesion volumes were measured using H&E. Immunohistochemical stainings for bromodeoxyuridine (BrdU) and von Willebrand Factor (vWF), and synaptophysin were performed. RESULTS In young adult rats, treatment with 4×10(6) PDA-001 cells significantly improved functional outcome after stroke (p<0.05). In older rats, significant functional improvement was observed with PDA-001 cell therapy in both of the 4×10(6) and 8×10(6) treatment groups. Functional benefits in young adult and older rats were associated with significant increases in the number of BrdU immunoreactive endothelial cells, vascular density and perimeter in the ischemic brain, as well as significantly increased synaptophysin expression in the ischemic border zone (p<0.05). CONCLUSION PDA-001 treatment significantly improved functional outcome after stroke in both young adult and older rats. The neurorestorative effects induced by PDA-001 treatment may be related to increased vascular density and synaptic plasticity.
منابع مشابه
Extracellular Vesicles Derived from Human Umbilical Cord Perivascular Cells Improve Functional Recovery in Brain Ischemic Rat via the Inhibition of Apoptosis
Background: Ischemic stroke, as a health problem caused by the reduced blood supply to the brain, can lead to the neuronal death. The number of reliable therapies for stroke is limited. Mesenchymal stem cells (MSCs) exhibit therapeutic achievement. A major limitation of MSC application in cell therapy is the short survival span. MSCs affect target tissues through the secretion of many paracrine...
متن کاملFunctional recovery in aged and young rats after embolic stroke: treatment with a phosphodiesterase type 5 inhibitor.
BACKGROUND AND PURPOSE Advanced age is associated with a decrease in brain plasticity compared with the young adult. Sildenafil, a phosphodiesterase type 5 (PDE5) inhibitor promotes brain plasticity and improves functional outcome after stroke in the young animal. Here, we test the hypothesis that sildenafil provides restorative therapeutic benefit to the aged animal. METHODS Male Wistar rats...
متن کاملBone marrow-derived mesenchymal stem cell and simvastatin treatment leads to improved functional recovery and modified c-Fos expression levels in the brain following ischemic stroke
Objective(s): The beneficial outcomes of bone marrow-derived mesenchymal stem cell (BMSC) treatment on functional recovery following stroke has been well established. Furthermore, 5-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors have also been shown to increase neuronal survival and promote the movement of BMSCs towards the sites of inflammation. However, the precise mechani...
متن کاملMobilization of stem cell with granulocyte-colony stimulating factor promotes recovery after traumatic brain injury in rat
Introduction: This study was designed to investigate the effects of granulocyte colony-stimulating factor (G-CSF) administration in rats for 6 weeks after traumatic brain injury (TBI). Methods: Adult male Wistar rats (n = 30) were injured with controlled cortical impact device and divided into four groups. The treatment groups (n = 10 each) were injected subcutaneously with recombinant human...
متن کاملMild Sensory Stimulation Protects the Aged Rodent From Cortical Ischemic Stroke After Permanent Middle Cerebral Artery Occlusion
BACKGROUND Accumulated research has shown that the older adult brain is significantly more vulnerable to stroke than the young adult brain. Although recent evidence in young adult rats demonstrates that single-whisker stimulation can result in complete protection from ischemic damage after permanent middle cerebral artery occlusion (pMCAO), it remains unclear whether the same treatment would be...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2014